
Exploring the suitability of the Viola-Jones framework for counting people

Chris Ashton
Aberystwyth University

cba1@aber.ac.uk (student no. 110059347)

Abstract

This paper explores the effectiveness of the Viola-Jones
algorithm for detecting faces and the suitability of applying
the algorithm to the problem of counting people, concluding
that a viable solution may be possible by combining classi-
fiers and/or by training classifiers for specific installations.

1. Introduction
Robust Real-Time Face Detection (Viola and Jones,

2004) proposes an automated object-detection framework
that can be run in real time. Though the framework can be
trained to detect any object, the paper specifically tackles
the problem of face detection.

Face detection isn’t a trivial task to accomplish compu-
tationally, as it raises many distinct problems. We need our
detector to take into account differences in age, gender and
race, faces hidden behind glasses or beards, and images of
faces at different angles and at different light exposures.

The human eye can easily look at an image and distin-
guish a real person from, say, a painting depicting a person,
but how does software make that distinction? Should it?

1.1. Uses for face detection

The world wide web can benefit from the advancement
of face detection techniques, including the ability to search
by image, or prompting users of social media sites to tag
their friends in uploaded images that have had faces de-
tected within them.

This being an efficient algorithm for face detection
means that detection software can be run on low-power de-
vices; particularly useful in digital cameras with little com-
putational power, for instance, allowing them to automati-
cally adjust the focus to try to provide the clearest image of
the faces in view.

Face detection is a step towards facial recognition. By
efficiently identifying the regions of images that contain
faces, we’re able to cut down the time taken to match a face
to an identity, as this intensive processing does not need to
be computed across every part of the image. Although face

detection alone is useful, advances in face detection is most
exciting in applications where face detection is the bottle-
neck. Fast, reliable face detection is worth investigating for
its potential contribution to the economy, the well-being of
the environment, and the spurring of hitherto unknown tech-
nological advances.

1.2. The Viola-Jones algorithm

Viola and Jones introduced three main contributions to
the field of object detection:

1) Integral image: created by computing the sum of the
grayscale values of all pixels above and to the left of every
pixel in the image, allowing any rectangular sum to be com-
puted in “four array references” [1]. This means that we can
detect faces at different sizes and distances in constant time.

2) Classifier: a small set of critical features, ensuring fast
classification in comparison to searching images for every
possible feature.

3) Cascade classifiers: a method for combining succes-
sively more complex classifiers, ensuring a good balance of
high detection rates and computational efficiency. These are
pre-computed by running a variation of the AdaBoost learn-
ing algorithm against a labelled dataset of positive and neg-
ative images and extracting the common features. Viola and
Jones were “the first to introduce the concept of boosting to
the computer vision community, which involves training a
series of increasingly discriminating simple classifiers and
then blending their outputs” [2].

1.2.1 The Viola-Jones method at runtime

The input image is converted to grayscale so that each pixel
in the image can be represented by an intensity value of 0-
255, before being computed into its integral image. This
image is split into sub-windows and scanned for features
defined in the first classifier of the cascade. Sub-windows
that pass the first classifier are then processed by the second
classifier, and so on, until only sub-windows containing the
detected objects remain.

Viola-Jones features differ to Haar basis functions in that
they rely on 2-4 rectangular areas to represent a feature.

1



Figure 1. Running the Viola Jones algorithm with a full frontal
face classifier leads to faces in profile not being detected.

These features can be symbolised by black and white rect-
angles which map to the natural dark and light areas on a
typical image of the object we’re trying to detect. The al-
gorithm takes the sum of the pixel values beneath the white
regions minus those of the black regions and the area is said
to have that feature if the sum is within a certain threshold.
Each feature needs to “perform at a level only slightly better
than chance” [3] to increase the overall detection accuracy
and be worth incorporating into a classifier.

2. Critique of proposed method
2.1. How well the method solves the problem

I tried running the algorithm against a collection of faces
downloaded from a university website [4]. The algorithm
had a 100% success rate with the frontal face images, but
did not pick out the faces that were taken from the side (see
Figure 1).

Viola-Jones is not very robust to variations to the norm.
According to Yang Cai, it “does not work well with
yawn detection due to the variations and dynamics of the
mouth.” [5] Also, “the algorithm failed when lighting was
poor, when there were multiple faces in the background of
images, and when the person was too far from the camera”.

Running the algorithm with two classifier files
(OpenCV’s ‘haarcascade frontalface default’ and ‘haarcas-
cade profileface’) improved the accuracy but slowed down
the processing time a little, due to the algorithm having to
run twice (once for each cascading classifier). See Figure 2,
where the portrait images were highlighted in blue. I also
had a new issue, where a face was picked up by both the
frontal and portrait classifiers, but it did detect all of the
sample set.

Figure 2. The use of multiple classifiers allowed all of the faces to
be detected.

Figure 3. The OpenCV classifier was reasonably accurate at de-
tecting faces in Facebook photos.

These sample images were taken in controlled condi-
tions. I decided to test the OpenCV [6] frontal face classifier
and the Viola-Jones algorithm with a sample of photos from
social media, whose lighting conditions and camera angles
tend to be more random.

Figure 3 shows that the algorithm works well with the
default parameters, provided faces are angled towards the
camera and aren’t too far away. I tried tweaking the param-
eters to see if I could improve the performance and decided
to use the wedding photo with the largest number of people
as my constant.

Reducing the minSize parameter from (30, 30) to (10,
10) led to ten detected faces and no false positives (Fig-

2



Figure 4. Tweaking the parameters doubled the face detection suc-
cess of the wedding photo.

Figure 5. A screenshot showing the Viola-Jones algorithm detect-
ing faces on a live webcam feed.

ure 4).
However, keeping minSize at (10, 10) and reducing min-

Neighbours to 1 led to the most number of faces being de-
tected (37), but with a large number of false positives (15).

This varying level of accuracy shows the importance of
setting detection parameters intelligently, even with a well-
trained classifier. Overall, the Viola-Jones algorithm and
classifier did a reasonable job of detecting faces, but it is
very dependant on good parameter settings and the input
images capturing people at the correct angle.

2.2. Successes of the method

One of the greatest strengths of the Viola-Jones algo-
rithm is its efficiency at run time. It can be run in real
time, even on low-power devices [1]. Figure 5 shows the
Viola-Jones face detection algorithm running at frame rate
on a Macbook Pro (2.8 GHz Intel Core i7 processor, 16 GB
1600 MHz DDR3 RAM).

Since the publication of the Viola-Jones paper, numerous
improvements have been suggested, including the concept
of the “rotated Haar-like feature” [7]. The original Viola-
Jones algorithm was not robust to rotation, so any object
that is regularly captured at different rotations (such as a
human hand) might be difficult to detect using normal Haar-
like features.

The advantage of the 45 degree angle twist is that “the di-
agonal coordinates of the pixel will always be on the same
diagonal set of pixels”, at any scale, meaning that “the num-
ber of different sized 45 degree twisted features available is
significantly reduced as compared to the standard vertically
and horizontally aligned features.”

There is a further advantage in that the integral image
calculations can be offloaded to the GPU by writing a cus-
tom shader for it. This is typically faster than calculating the
integral image on the CPU, especially for large image sizes,
“allowing more complex classifiers to be implemented in
real time”, and therefore more accurate detectors.

2.3. Failure modes of the method

The importance of having a diverse dataset cannot be un-
derstated. I refer to the Pentagon’s failed multi-million dol-
lar mainframe whose aim was to detect camouflaged tanks
hiding in the trees. [8].

The problem was that the training dataset contained pho-
tos taken in consistent conditions, and the classifier had
trained itself to look for the biggest contrast between the
positives and the negatives: the brightness of the sky. It
would return true or false based on the weather conditions,
rather than whether or not there was a tank in the image.

In addition to a diverse dataset, some heuristics are re-
quired at the classifier-training stage. AdaBoost must be
provided with parameters including a minimum detection
rate, maximum false positive rate, height and width ratio of
the object we want to detect, and the number of stages re-
quired of the cascade. Requesting too many stages is likely
to lead to an over-fit for the data, i.e. it will accurately detect
the object in the images used for training but will be poor at
detecting objects “in the wild”. However, too few classifiers
will detect many false positives.

The probabilistic nature of evaluating features means
that the training algorithm often takes days or weeks to
generate a cascade of the required accuracy. However, the
benefit of this long training stage is that, once computed,
the XML representation of an object’s features is transfer-
able and can be computed against new input images very
quickly.

3. Application of the proposed method to the
scenario

The Viola-Jones algorithm alone is not suited to scenar-
ios where we have to maintain state. To illustrate this, let us
apply the algorithm to the “Safety” scenario, which requires
us to keep a tally of everyone who has entered or exited a
venue.

To prevent the same person being counted from one
frame to the next in a live video stream, we’d need to add
face recognition technology. Assuming that the venue’s

3



entrance is also its exit, the person’s direction of motion
will determine whether the tally ought to be incremented or
decremented. We now need to not only detect and recognise
a person, but track the direction in which they’re moving!

My hypothesis is that the Viola-Jones algorithm is best
suited to scenarios where no state needs to be maintained.
For instance, let’s examine the “Money” scenario which
counts the number of people in a group so that the organi-
sation can charge for the right number of attendees. In this
case, a photographer could take a single image of the group
and use face detection to count the number of people on a
group-by-group, image-by-image basis.

For the purposes of this paper, I’ll examine the third ex-
ample given in the scenario: that of a supermarket want-
ing to automate the opening and closing of checkout lanes
based on the number of customers queuing. A frame could
be sampled once every few seconds, the number of faces or
bodies counted and the number of required checkouts cal-
culated. Again, this is stateless: we only care about making
a quantitative decision based upon the number of customers
in a queue at that specific point in time.

3.1. Camera installation

If we were to use the Viola-Jones algorithm for body de-
tection, the camera would need to be installed at a suitable
height and angle so as to maximise the chance of detecting
peoples’ bodies frontwards on. In the case of the supermar-
ket scenario, this would mean positioning the camera near
the exit and facing the checkout.

Depending on the logic of the program, I’m confident
that one camera should be able to accommodate two check-
outs, thus the number of cameras required in the system
would be n/2, where n is the number of checkouts in the
store.

3.2. Using the classifiers on typical CCTV images

I sourced 48 random supermarket CCTV images, all of
which contained people, through scouring the web. I then
ran my Python script [9] once using the OpenCV face cas-
cade classifier and once using the OpenCV full body cas-
cade classifier.

The face classifier detected faces in 28 of the images
whereas the body classifier detected bodies in 16. These
also contained 23 and 11 false positives respectively.

The top right portion of Figure 6 shows a false positive
in the wine shelving but the real human face was missed en-
tirely. The bottom left portion shows the challenging con-
ditions of detecting faces when customers are naturally in-
clined to be facing away from the camera. Finally, the bot-
tom right portion shows that even small inconsistencies in
the angle of the face can lead to false negatives.

Bodies angled towards the camera were sometimes de-
tected, as seen in the top left portion of Figure 7. However,

Figure 6. The default face classifier has a limited detection rate of
faces over a range of CCTV systems.

Figure 7. The body detector had even poorer detection rates.

the top right and bottom left portions show that the nature
of people shopping in the supermarket (e.g. holding baskets
and wheeling trolleys) can be problematic for body detec-
tion. Finally, the bottom right portion shows that even rela-
tively unobstructed images can still have false negatives.

3.3. Training a classifier for an individual installa-
tion

The position and angles of the installed CCTV cameras
varied considerably in my dataset, as did the captured image
quality. Perhaps it is unfair to expect a general body/face
detector to be effective in such volatile environments.

I wondered if a cascade classifier could perform better if
it could be calibrated according to the image quality and

4



Figure 8. My custom classifier was poor at detecting people.

viewing angle of an individual camera. Sample images
could be collected from the camera after its initial instal-
lation, any people in the sampled images could be labelled,
and that dataset could be used to train a camera-specific per-
son detector.

Freely available supermarket CCTV footage proved dif-
ficult to find, so I downloaded 23 minutes worth of CCTV
footage [10] of what appeared to be an internet cafe.

I extracted a frame from the video every five seconds:
282 images in all. I then manually cropped every person
from every frame, ending up with 279 cropped positives to
train the classifier with. Finally, I cropped 253 negative im-
ages from the same sample of 282 images.

I followed a tutorial [11] to train my own classifier. This
required compiling a vector from my list of cropped pos-
itive images, creating 1500 samples from my original 279
positive images.

Training a classifier often takes days or weeks - mine
took around 23 minutes. I believe that this was down to
the algorithm over-fitting the positive samples. Many of
my samples were very similar (e.g. many were of the same
person sitting at a computer), and the background scene
throughout the feed obviously remained identical. It didn’t
take long for the classifier to be trained to the specific envi-
ronment of the cafe.

Figure 8 is the result of running my classifier over one of
the frames in the video.

It managed to detect the two people sat at the back of the
cafe with their computers. These two people didn’t move
much in the 23 minutes of video, and made up quite a pro-
portion of my positive samples, so they were correctly iden-
tified.

The rectangles surrounding them are elongated because
of the parameters passed to the “createsamples” and “train-
cascade” programs. The OpenCV classifier trainers are
somewhat limited in that they require all positive samples
to have the same aspect ratio. However, as can be seen in
the screen shot, the aspect ratio of a person when they’re sit-
ting, standing, or partially obscured behind a counter varies

Figure 9. One of the positive samples used to train my classifier.
The uncropped laptop corrupted the feature learning process.

Figure 10. The same footage was passed through the OpenCV full
frontal face cascade classifier.

considerably. My parameter choices (a width of 40 and a
height of 80) were somewhat arbitrary.

In every frame, my custom classifier consistently de-
tected a person in the bottom left corner. I believe this was
because this was the most feature-rich corner: the sharp
edge of the laptop makes for an easily detectable feature.
A number of my sample positive images were of a man
leaning against the counter, with the laptop in the crop (see
Figure 9): AdaBoost simply picked up the most detectable
feature.

I passed the same CCTV footage through the Haar cas-
cade “fullfrontal” face classifier (Figure 10). It had fewer
false positives, but again we had numerous false nega-
tives. Neither classifier worked very well for the scenario of
counting people in this particular cafe, where people form
multiple body positions and face multiple different angles.

4. Conclusion
In general, the Viola-Jones framework is a good object

detector, provided that the cascade classifier is trained with

5



good data and parameters and that the input images are of
similar orientations and poses as the training images. How-
ever, the framework is not very robust to noise or variations
to the norm, limiting its usefulness in the “real world”.

Given the efficiency of the algorithm, Viola-Jones is
suited to real time applications where object detection is de-
sirable, but where accuracy (or lack thereof) is not a major
financial or health and safety risk.

In terms of the problem of counting people, the algo-
rithm doesn’t work well “out of the box”. However, it could
be a good basis for a solution.

In Figure 1, some faces were not detected because they
were not captured at the expected angle. In Figure 2, those
faces were captured because I used multiple cascade classi-
fiers to detect both frontal and profile views of faces. Sim-
ilarly, I believe that multiple cascade classifiers could be
used to detect people in supermarkets with typical super-
market noise. For example, full-frontal body cascade clas-
sifier could be used in tandem with a classifier that detects
a person partially obscured by a trolley, plus a classifier de-
tecting a person bending over to pick up groceries. The
combined efforts of these classifiers could lead to a fairly
accurate detector.

Although my first attempt at training a classifier finely
tuned to a specific environment was not very successful, I
believe that given enough time, the correct training parame-
ters, and better positive and negative samples, a proprietary
cascade classifier for a specific supermarket CCTV instal-
lation could also be a reasonably accurate person detector.
This, perhaps in combination with other cascade classifiers,
could provide an accurate enough detector to become a vi-
able solution to some of the problems outlined in the sce-
nario.

The key consideration is that the Viola-Jones algorithm
alone is not well suited to problems which require the pro-
gram to maintain an internal state. Instead, Viola-Jones is a
reasonable solution to self-contained snapshots of problems
which can be tackled at arbitrary intervals.

5. Self-evaluation

I have a strong understanding of the Viola-Jones algo-
rithm, shown by my in-depth discussion of the algorithm in
section 1. Introduction.

In order to appreciate the computational speed of the
Viola-Jones algorithm, I downloaded OpenCV and ran the
algorithm against a live input feed from my webcam. Code
examples provided in Programming Computer Vision with
Python [12] were useful for testing the algorithm. I exam-
ined the robustness of the algorithm and its classifiers by
passing in images from social media which were captured
in a variety of conditions, and I adjusted the function param-
eters to assess how it affected the accuracy of the detector.

Finally, to fully understand the algorithm learning pro-
cess, I followed a tutorial on creating my own cascade clas-
sifier to try to create a person detector custom to a spe-
cific environment. This required aggregating a large dataset
of images, identifying positive and negative samples, and
modifying the learning algorithm parameters to try to attain
reasonable degrees of accuracy.

Looking at my work constructively, I could have invested
more time in training my classifier and using a final percent-
age of accuracy in helping to form my conclusion. How-
ever, this was beyond the scope of the assignment.

Overall, I believe my work is deserving of an A grade.

References
[1] P. Viola and M. Jones, “Robust real-time face detection,”

International Journal of Computer Vision, vol. 57, no. 2,
pp. 137–154, 2004. 1, 3

[2] R. Szeliski, “Computer vision: Algorithms and applica-
tions,” pp. 1–789, 2010. 1

[3] M. J. F. Daniel Westreicha, Justin Lesslerc, “Propensity
score estimation: neural networks, support vector machines,
decision trees (cart), and meta-classifiers as alternatives to lo-
gistic regression,” Journal of Clinical Epidemiology, vol. 63,
no. 8, pp. 826–833, 2010. 2

[4] M. I. of Technology, to the Center for Biologi-
cal, and C. Learning, “Face recognition database.”
http://cbcl.mit.edu/software-datasets/
heisele/facerecognition-database.html,
2004. [Online; accessed 20-October-2014]. 2

[5] Y. Cai, “Ambient diagnostics,” 2014. 2

[6] itseez, “Opencv.” http://opencv.com/, 2014. [Online;
accessed 10-October-2014]. 2

[7] C. Messom and A. Barczak, “Stream processing for fast and
efficient rotated haar-like features using rotated integral im-
ages.” 3

[8] N. Fraser, “Neural network follies.” https://neil.
fraser.name/writing/tank/, 1998. [Online; ac-
cessed 09-November-2014]. 3

[9] C. Ashton, “Viola-jones experiments.”
https://github.com/ChrisBAshton/
viola-jones-experiments, 2014. [Online; ac-
cessed 14-November-2014]. 4

[10] M. R. Islam, “Cctv footage of london.” https://www.
youtube.com/watch?v=MlMerr9H9xw, 2013. [On-
line; accessed 09-November-2014]. 5

[11] T. Ball, “Train your own opencv haar classifier.”
http://coding-robin.de/2013/07/22/
train-your-own-opencv-haar-classifier.
html, 2013. [Online; accessed 09-November-2014]. 5

[12] J. E. Solem, “Programming computer vision with python,”
pp. 257–277, 2012. 6

6

http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html
http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html
http://opencv.com/
https://neil.fraser.name/writing/tank/
https://neil.fraser.name/writing/tank/
https://github.com/ChrisBAshton/viola-jones-experiments
https://github.com/ChrisBAshton/viola-jones-experiments
https://www.youtube.com/watch?v=MlMerr9H9xw
https://www.youtube.com/watch?v=MlMerr9H9xw
http://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html
http://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html
http://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html

